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Abstract 

 

The simultaneous expansion and decarbonisation of the global power sector is imperative for 
achieving the mutually dependent goals of poverty alleviation and the mitigation of climate 
change. Substantial policy and cost reductions in renewable generating options over the period 
of 2007 to 2017 were met with a three-fold increase in global renewable generating capacity. 
If sufficient renewable generating capacity is to be deployed to meet sustainable development 
goals, early evidence of the dynamics thereof might be captured in this period. 

 

Asset-level data sets of the global power sector have been obtained from S&P Market 
Intelligence for the years 2007 through 2017. Power sector assets, companies, and countries 
are arranged into a series of bipartite social networks for three fuel classes: fossil fueled 
generation, low-carbon (nuclear and hydro) generation, and renewable generation. Bipartite 
networks are projected on both company are country nodes to create directed networks. Basic 
network properties are analysed over time to reveal basic trends in the emergence of 
renewable generating options. The network analysis confirms that the ongoing energy 
transition is one of paradigmatic insurgency rather than steady evolution. Renewable 
generating companies are smaller and operate in more countries than incumbent fossil fuel 
and low-carbon competitors. The country projection is analysed using a fixed effect model to 
identify peer effects on the adoption of renewable generating options. Peer effects on the 
adoption of renewable generating options given the fixed effect model as currently developed 
are found to be insignificant. 

 

Results are discussed and ambitions for future work are articulated. This paper is under 
development as part of the Oxford Martin School Programme on the Transition to a Post-
Carbon Economy. 
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1. Introduction 

The defining challenge of the 21st century is the dual imperative of eliminating global poverty 
while constraining climate change to safe levels (Stern 2015). Meeting the goals of the Paris 
Agreement will require the complete descarbonisation of the energy system. Many cost-effi-
cient paths to mitigating global climate change require that the power sector lead the transition 
of the energy system, with most (IPCC 2014). The pathways also involve the substantial growth 
of the power sector, as the portion of energy services met with electricity increases, particularly 
transport and heat (e.g. IPCC 2014, IEA 2017, ETC 2017). Further, electrification is an urgent 
development priority, providing an input commodity for a wide range of other economic activi-
ties, and being directly required for a number of development indicators like healthcare, edu-
cation, water supply, and sanitation. Catastrophic climate change will disporportionately affect 
the global south (e.g. Mercer 2015), meaning it is only possible address development and 
sustainability priorities simultaneously. The simultaneous expansion and decarbonisation of 
the global electricity system is an urgent priority. 

 

Between 2007 and 2017 generating capacity of grid-scale (>1MW) solar photovoltaic, wind, 
and bio-energy (‘renewables’) increased from 484GW to 1,442GW – 6.5\% and12\% of total 
generating capacity respectively. Over this period, the module cost of solar PV power fell from 
$1.3/W to less than $0.6/W, wind turbine costs fell from €1.32/W to €0.89W, and Lithium Ion 
battery pack costs fell from over $1000/kWh in 2010 to less than $209/kWh in 2017 (BNEF 
2016, 2017). The Kyoto Protocol entered into effect, the Paris Agreement was signed, and the 
portion of all carbon emissions which were priced went from 5\% to 1% (World Bank 2017). 
The International Energy Agency (IEA) projects that to achieve a sustainable development 
pathway that meets the development needs of the global South while constraining warming to 
less than 2oC, the installed capacity of renewables must increase to 6,664GW and 51\% of all 
generating capacity by 2040 (IEA 2017a). If this fourteen-fold increase is indeed occurring, 
early evidence might be seen in this time period. 

 

The IEA, arguably the publisher-of-record for global energy system statistics and projections, 
has been criticized for systematically underestimating changes in the energy system, particu-
larly changes in the price and diffusion of renewable generating options (CTI 2017, De Vos & 
De Jager 2014). Projected changes in energy systems are contentious and subject to deeply 
entrenched interests - they are critical inputs for investment decisions (as in the controversial 
use of the IEA’s Current Policies Scenario by Peabody Energy (Attorney General of the State 
of New York 2015)), become flashpoints in corporate governance debates (such as in the ad-
vocacy of the Aiming for A coalition (Shareaction 2017)), and provide benchmarks for a range 
of policy and finance interventions (E.g. CDP’s science-based targets (2017), Oxford Martin 
School’s Working Principles for Investment in Fossil Fuels (2015), 2dII 2o portfolios (2015)).  

 

The IEA employs equilibrium models in their projections which seek to balance energy demand 
with investment in supply (IEA 2017a)(see e.g. Pindyck 2013 for a review). These models 
generally conform to linear models combining research, development, and policy ‘push’ (Jen-
sen et al. 2007) with demand ‘pull’ (Godin 2013, 2015). They are less capable of interrogating 
techno-economic path dependence (Geels 2002, Martin 2006), the (un)embeddedness of in-
formation and institutions (Binz et al 2014, Chaminade 2015), the mission-alignment of renew-
able energy innovation (Mazzucato 2015), and the grain size of energy system capital goods. 
The socio-technical nature of innovation (see Rip & Kemp 1998) in the global energy system 
lends itself to social network analysis where peer effect itself can be causal (Moffit 2001) with-
out intervening utility functions and price formation.  

 

The goal of this paper is to be able to identify sensitive intervention points and tipping points 
in the transition to a post-carbon economy. A sensitive intervention point is where a small 
adjustment of one or more control variables can deliver a significant change in an import state 
variable (Farmer & Hepburn 2017). Understanding the global power sector as a social network 
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of assets, companies, and countries may help identify these points and builds towards an eco-
nomic model of climate change suited for purpose (see Farmer et al (2015) for a critique of 
current models). It is being prepared as part of the Oxford Martin Programme on the Transition 
to a Post-Carbon Economy.  

 

Section 2 reviews the use of social networks to study technology diffusion, and their application 
to innovation and learning - particular in the context of energy systems. Section 3 describes 
data sources and preparation. Section 4 describes network formation and indicative attributes. 
Section 5 presents a fixed-affect model to determine peer diffusion affects. Section 6 presents 
early work on more sophisticated diffusion models. Section 7 concludes. 

2. Networked Diffusion, Learning, and Innovation 

Networks comprised of decision-makers and their social relationships have proven useful for 
understanding the significance of peer and network effects in a wide range of problems. Policy 
makers and marketers alike seek models to describe how technologies (in the broadest sense) 
might diffuse through a population of decision-making agents, for either the purposes of de-
signing policy interventions (see, e.g. Athey 2017) or successfully marketing a product (e.g. 
Bloom 2013). The canonical Bass model (1969) and its derivatives (e.g. Mahajan et al. 1990) 
explain how technology is adopted via social contagion, reproducing sigmoidal trends ob-
served across industries and time periods (E.g. Griliches 1957, Rogers 1962, 1983, Blackrock 
2015).  

 

Network effects capture a range of incentives for networked decision-makers and may be ei-
ther direct or indirect (see, e.g. Birke 2009). Direct effects capture the increase in utility pro-
portional to the network degree - such as by the socialisation of costs on for telecommunica-
tions or sanitation infrastructure, or the coordination to a common industry standard or social 
protocol such as driving on the left or right. Indirect network effects are of greater interest to 
this study: the benefits to technology adopters based on informational spillovers, learning ef-
fects, and uncertainty reduction (Katz & Shapiro 1986), bearing many similarities to evolution-
ary economic geography (Martin 2006). Peer effects (see Moffit 2001) offer a more broad def-
inition in the identification of causal influence between an agent's actions and those of its peers. 

 

Allan et al. (2014) have surveyed the diffusion of renewable energy technologies. Social net-
works have been commonly applied in the study of energy technology adoption decisions by 
households. Examples include the diffusion of smart meters in the UK (Cassidy 2015), solar 
photovoltaics in Germany (Darshing 2017) and California (Bollinger 2012), biogas generation 
in China (He 2015). These social network studies use the geospatial locations of technology 
deployments to study the diffusion of technology along edges derived from geospatial proxim-
ity. Vega & Mandel (2018) use a network of wind turbine installations to examine the diffusion 
of wind power.  

3. Data Preparation and Network Formation 

3.1 Data Description 

Asset-level data for the global power sector have been obtained from S&P Market Intelli-
gence's World Electric Power Plant database (WEPP) for the years 2007 through 2017 inclu-
sive. WEPP is a feature-rich database of power generating units, their locations and parame-
ters, and their corporate owners, see Table A1. WEPP's authors claim complete overage 
(>95%) for almost all fuel and conversion technologies over 50MW in size, comprehensive 
(>75%) coverage for smaller generating units or select conversions and geographies, particu-
larly China, and less than comprehensive coverage (<75%) for only a few niche technologies 
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or geographies (IEA 2017b). Fuel classes have been aggregated into three characteristic cat-
egories, fossil fuels, low-carbon, and renewables, according to Table A2. Hydro Power has 
been included in the ‘low carbon’ fuel class because the power stations are typically large, 
fixed capital assets, and in many countries in the world the economic hydropower resources 
have been fully realised. Regional definitions are adapted from the regional definitions of the 
IEA World Energy Outlook series of publications, see Table A3.  

 

Figure 1 shows the growth of global generating capacity by fuel class and company size. Select 
regions are shown in Figures A1a through A1h. All regions have large single companies with 
dominant market positions and almost exclusively fossil fuel or low-carbon generating options. 
These large incumbent companies are often government ministries or regulated monopolies, 
or the same reborn as post-liberalisation national champions. In many regions there is a rapid 
adoption of renewable generating option underway. The companies adopting renewables are 
often much smaller and numerous than incumbent fossil or low-carbon generating companies. 
The growth of generating capacity in the global south is also immediately apparent. Aggregate 
statistics for the sample period data are shown in Table 1. 

 

[Figure 1: Global Cumulative Generating Capacity] 

 

[Table 1: Aggregate Data from Sample Period] 

3.2 Network Formation 

The location of assets is used to organise the panel data into a bipartite network of companies 
and countries. Location data is commonly used in the construction of unobserved social net-
works - positing that by geospatial proximity alone two nodes are more likely to have a social 
relationship. Company and country nodes are connected by edges weighted according to the 
generating capacity of company assets located in the given country. This network formulation 
creates a bipartite graph, wherein no two countries or companies are joined by an edge. The 
bipartite network graph is developed in Equations 1 to 6. 

 

Let undirected bipartite graph G=G(U,V,E) with: 1 

Nodes U = {country1 … countryr} 2 

 V = {company1 … companys} 3 

Edges E = {(u, v) = ∑ 𝑎𝑠𝑠𝑒𝑡𝑀𝑊 |𝑎𝑠𝑠𝑒𝑡𝑐𝑜𝑢𝑛𝑡𝑟𝑦=𝑢,𝑎𝑠𝑠𝑒𝑡𝑐𝑜𝑚𝑝𝑎𝑦 =𝑣 ∀ 𝑢 𝑖𝑛 𝑈, 𝑣 𝑖𝑛 𝑉} 4 

Biadjacency Matrix 𝐵 =  [

𝑏0,0 ⋯ 𝑏𝑟,0

⋮  ⋮
𝑏0,𝑠 … 𝑏𝑟,𝑠

] ∀ 𝑏 𝑖𝑛 𝐸 5 

Adjacency Matrix  𝐴 =  (
0𝑟,𝑟 𝐵

𝐵𝑇 0𝑠,𝑠
) 6 

Three graphs are prepared for the three aggregate fuel classes: GG for renewables, GB for low-
carbon generation, and GF for fossil fuel generation. For each fuel class, the subset of the 
company’s assets belonging to each fuel class are considered the assets of that company – a 
company can appear in the node set V of all three graphs. 

3.3 Bipartite Network Analysis 

The simple degree of a node in an undirected graph may be calculated according to Equation 
7. 



Power Sector Asset Networks: Determinants of the Diffusion of Renewables 

Lucas Kruitwagen 

ETH PhD-Academy on Sustainability and Technology 2018 5 

Degree 𝑑𝑖 = ∑ (
𝑎𝑖,𝑗 > 0 = 1

𝑒𝑙𝑠𝑒 = 0
)

𝑗

 ∀ 𝑎 𝑖𝑛 𝐴 7 

Graph degree distributions provide early insight into the determinants of the formation of ran-
dom graphs. Degree distribution means have been prepared for company nodes V in the bi-
partite graphs GG, GB, and GF, see Figure 2. 

 

[Figure 2: Mean Company Degree Distributions] 

 

Between 2007 and 2017 mean degree distributions for company nodes V in GG and GB in-
creased. Power generating companies were in general more likely to have renewable and low-
carbon assets in multiple countries in 2017 than they were in 2007. Degree distributions for 
companies with renewable power assets showed the most pronounced increase and have 
mean degrees much higher than fossil fuel and low-carbon generating companies. Degree 
distribution means in all three graphs are quite low – the multiplicity of small companies oper-
ating in a single country reduces the mean degree substantially. Figure 3 is more illustrative. 

 

[Figure 3: Degree Distributions for all Companies] 

 

In general, very few companies operate low-carbon generating assets in multiple countries. 
Between 2007 and 2017 the number and degree of companies operating renewable and fossil 
fuel assets in multiple countries substantially increased. The largest fossil fuel and low-carbon 
generating companies only have assets in a single country. Companies with renewable gen-
erating assets, even large ones, are more likely to have assets in more countries. 

 

The degree distributions for country nodes U in the bipartite graphs GG, GB, and GF have been 
color-coded according to the country’s region, see Figure 4 and 5. The mean degrees for re-
newable and fossil fuel portions of countries U have increased substantially since 2007. India, 
in particular, has a high degree rivalling that of the United States for renewables generation. 
China has a small degree across all fuel classes relative other countries of similar size. 

 

[Figure 4: Mean Company Degree Distributions] 

 

[Figure 5: Degree Distributions for all Companies] 

 

4. Network Projections 

An undirected bipartite graph G(U,V,E) can be projected to row-stochastic directed graphs 
G’(U,E') and G'(V,E') for the purposes of identifying peer effects among either the node sets U 
or V. Equations 7 through 10 describe the  

 

Let directed row-stochastic G’U=G’(U,E’) with: 8 

Adjacency Matrix  𝐴′𝑈 =  ‖𝐴‖. ‖𝐴𝑇‖ 9 

Let directed row-stochastic G’V=G’(V,E’) with: 10 

Adjacency Matrix  𝐴′𝑉 =  ‖𝐴𝑇‖. ‖𝐴‖ 11 
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Both the country- and company-projections seek to identify peer effects which are not strictly 
observed. Such peer effects might arise from geospatial proximity, an analogous social net-
work of individuals (in a labour supply, consultants, etc), or a local supply chain. 

4.1 Company Projection 

The company projection uses country co-location to determine social relationships between 
companies. Network edges signify that two companies share common exposure to policies, 
labour, and markets conditions across countries. Snapshots of the company projection are 
shown in Figure 6 using a force-directed layout and seeding node positions according to the 
centroid of the country wherein lies the plurality of the company’s assets. 

 

[Figure 6: Company Projection] 

4.2 Country Projection 

The country projection uses company ownership of co-located assets to determine social re-
lationships between countries. Network edges signify that two countries have companies with 
assets in both countries. Snapshots of the country projection are shown in Figure 7 using the 
country centroids as node positions. 

 

[Figure 7: Country Projections] 

 

Three country-projected networks have been prepared for the three aggregate fuel classes: 
G’U,B, G’U,G, G’U,F. Select network properties have been analysed for the three networks and 
are shown in Figure 8. Snapshots of the major component of the three networks are shown in 
Figure 9. 

 

[Figure 8: Network properties of G’U,G, G’U,B, and G’U,F] 

 

[Figure 9: Major Component in G’U,G, G’U,B, and G’U,F] 

 

All three network projections increased in number and size of components over the period 
while decreasing in isolated nodes. G’U,G and G’U,F feature single large major components. The 
major component of G’U,F had a degree of about 6 through the study period, while the degree 
of the major component of G’U,G continued to grow. 

 

Assortativity is the preference of nodes to form links with other nodes according to some prop-
erty. Figure 8 shows the assortativity of nodes in G’U,G, G’U,B, and G’U,F according to the region 
attribute of the nodes. Countries in the region OECD_EUR are assortative with themselves 
across all three fuel classes and the entire study period. Assortativity in low carbon generation 
seems likely driven by geospatial proximity of the regions – OECD_EUR with itself and TE 
through the whole study period, and AFRICA and LAM emerging as self-assortative regions 
by 2017. Assortativity in G’U,G reduced over the study period while OECD_EUR maintained a 
central role with the other regions. Assortivity increased in G’U,F as AFRICA and LAM devel-
oped mutual preferences for themselves and each other. 

 

[Figure 10: Assortativity for Region Attribute] 



Power Sector Asset Networks: Determinants of the Diffusion of Renewables 

Lucas Kruitwagen 

ETH PhD-Academy on Sustainability and Technology 2018 7 

5. Fixed-Effect Model 

In order to demonstrate causality in peer effects (per Moffit 2001), a model must be constructed 
which controls for self-selection (homophily), correlated unobservables, and simultaneity. A 
fixed-effect model is prepared as in Bollinger (2012) and Ke (2016). The fixed effect model 
seeks to identify peer effects in the diffusion of the portion of renewable generating capacity in 
nodes in G’U. The model uses the previous year’s inbound influences to test whether they are 
detrimental in the given year’s renewable generating capacity. 

5.1. Model Preparation 

The portion of renewable generating capacity is given by Equation 12. Inbound influence on 
that node is given by Equation 13. A Fixed Effect Model is then prepared as in Equation 14. 
Returning to Moffit’s (2001) conditions for causality in peer effects, the model used must control 
for simultaneity, homophily, and correlated unobservables.  

 

This model formulation uses a one-hot vectorisation of countries so that all attributes or pa-
rameters that might be associated a given country are captured by that country’s unique re-
gressor. This avoids homophily as no two countries have the same type. Per Bollinger (2012) 
and Ke (2016), simultaneity of agent actions can be controlled for by using only past actions 
of an agent’s neighbours in determining peer effect. This is done by only considering the in-
bound peer influence on a given agent from the previous time step. Correlated unobservables 
are not controlled in this model. Typical approaches use either an instrumental variable anal-
ysis (as in Ke 2016) or a difference-of-differences approach (as in Bollinger 2012, Bloom 2013) 
to control for correlated unobservables. Finally, the date is appended to the independent data 
and they are concatenated together to give a dataframe of the form in Equation 15. 

 

With biadjacency matrices B and BG:  

Renewable Portion 𝑃𝑂𝑅_𝐺𝑅𝐸𝐸𝑁𝑖 =  ∑
𝑏𝐺,𝑖,𝑗

𝑏𝑖,𝑗
𝑗

 ∀ 𝑖 𝑖𝑛 {0 … 𝑟} 12 

Inbound Influence 𝐼𝑁𝐹𝐿𝑈𝐸𝑁𝐶𝐸 = 𝐴𝑈
′ . 𝑃𝑂𝑅_𝐺𝑅𝐸𝐸𝑁 13 

Fixed Effect Model 𝑃𝑂𝑅_𝐺𝑅𝐸𝐸𝑁𝑖,𝑡 = 𝛽0𝐼𝑁𝐹𝐿𝑈𝐸𝑁𝐶𝐸𝑡−1 + 𝛼𝑖 + 𝛾𝑡 + 𝜀 14 

With: 𝛽0 as a time- and country-fixed coefficient of peer influence  

 𝛼𝑖 as a time-fixed coefficient for country i (one-hot breakout)  

 𝛾𝑡 as a universal time coefficient  

 𝜀 as an independent and identically distributed random variable  

DataFrame Y[POR_GREEN] ~ X[INFLUENCEt-1, DATE, {AD, …, ZW}, Constant] 15 

5.2 Least-Squares Minimisation 

A least-squares minimisation is applied to the dataframe in Equation 15 to obtain the parame-
ters β, γ, αi, and ε. The parameter coefficients and t-statistics are shown in Figure 9. 

 

[Figure 11: Fixed Effect Model Coefficients and T-Statistics] 

 

The country dependent parameters αi range from slightly negative to highly positive. In certain 
regions, like OECD_EUR, ME, and OECD_AMX, countries show a positive affinity for adopting 
renewables, all other things being equal. In others, like TE, AFRICA, and OTHERX, country 
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parameters indicate a reluctance to adopt renewables. The time-dependent parameter γ and 
constant parameter ε are approximately an order of magnitude smaller than the country pa-
rameters αi. Both, however, are positive and significant to the model. The peer-influence pa-
rameter β does not meet the critical t-statistic for the model.  

6. Discussion and Next Steps 

6.1 Discussion of Findings 

Analysis of the topology and evolution of the networks examined above provide useful narra-
tives about the changes in the power sector. The global power sector is undergoing globalisa-
tion, with more companies operating assets in multiple companies over the time period. Re-
newable power generation is growing rapidly in some regions and countries, and not at all in 
others. 

 

The size and degree of companies building renewable generating options are substantially 
different to the size and degree of companies building fossil fuel or low-carbon generating 
options. The former are emerging with small numbers of assets and small aggregate generat-
ing capacities. They are more likely to operate assets in multiple countries relative to compa-
nies with fossil fuel and low-carbon assets. Many of the companies with fossil fuel and low-
carbon generating capacities are large incumbents, often vertically-integrated state-run gener-
ating companies. Regional groups of countries show some homophily - companies own and 
operate assets with a bias to certain regional groups. 

 

The basic fixed-effect model prepared and presented here offers less useful insight. Peer ef-
fect, the phenomena of interest, barely appears to impact the amount of renewable generating 
capacity being built in countries. This model does not account of correlated unobservables and 
has only been applied on the country-projected graph G’U. 

6.2 Pending Work and Improvements 

The fixed effect model presented in this paper needs to be revisited. The properties of this 
model which satisfy the causality of peer effect need to be better articulated and documented. 
The bipartite graph and its projections are not immediately analogous to the use of the fixed 
effect models in the referenced papers. This difference needs to be interrogated. 

 

Additional attributes for country nodes which may be correlated with renewable power deploy-
ment may add resolution to the fixed effect model and reduce the dominance of the country 
parameters. A number of attributes are available as simple datasets: carbon pricing coverage 
(from, e.g. the World Bank 2017), renewable energy subsidies scheme (from, e.g. REN21), 
power market concentration, and power market structure (i.e. extent of liberalisation, etc.). 
Some attributes may be themselves be better arranged as a network, for example geographic 
adjacency. Diffusion can be measured across these multilayer networks as in ref (). 

 

Advanced diffusion models use more sophisticated measures of centrality (e.g. Eigenvalue 
centrality, PageRank). The calculation of these centrality measures and their adoption in a 
more sophisticated diffusion model may better illuminate the relationships between assets, 
company strategies, and country-level policies. 

7. Conclusion 

The global power sector is rapidly expanding, particularly in the Global South. An insurgence 
of renewable generating capacity is disrupting large fossil fuel and low-carbon incumbents. 
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The companies with renewable generating assets are typically smaller than fossil fuel and low-
carbon incumbents and are regionally concentrated. Using asset-level data from S&P Market 
Intelligence company and country asset aggregations are arranged into a bipartite network. 
The bipartite network is also projected to networks of only country- and company-nodes. 

 

Network properties are analysed over time for renewable, low-carbon, and fossil fuel classes. 
Network properties reveal the rapid deployment of renewables and that companies and 
countries with renewable generating capacity are much more connected than fossil fuel and 
low-carbon counterparts. Some regional homophily is observed. 

 

A fixed effect model is used to identify peer effects on the adoption of renewable generating 
options. Peer effects are found to be insignificant relative to country, date, and constant 
regressors. The peer effect model developed in this study has extensive potential for 
improvement. Future plans for this work also include the introduction of extensive 
complementary policy datasets and and exploration of other model types to better identify the 
primary drivers of renewable generating technology. 
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Tables and Figures 

Figure 1: Global Cumulative Generating Capacity 

 
Figure 2: Mean Company Degree Distributions 

 
Figure 3: Degree Distributions for all Companies 
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Figure 4: Mean Country Degree Distributions 

 

Figure 5: Degree Distributions for all Countries 



Power Sector Assets: Determinants of the Diffusion of Renewables 

Lucas Kruitwagen 

ETH PhD-Academy on Sustainability and Technology 2018 12 

 

Figure 6: Company Projection 

2007 2017 

  

Figure 7: Country Projection 

 2007 2017 

G’U,F 

  



Power Sector Asset Networks: Determinants of the Diffusion of Renewables 

Lucas Kruitwagen 

ETH PhD-Academy on Sustainability and Technology 2018 13 

G’U,B 

 
 

G’U,G 

 
 

 

Figure 8: Network properties of G’U,B, G’U,G, and G’U,F 

G’U,F 

 

G’U,B 

G’U,G 

 

 

Figure 9: Major Component in G’U,B, G’U,G, and G’U,F 

 2007 2017 
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G’U,F 

  

G’U,B 

 
 

G’U,G 

 
 

Figure 10: Assortativity for Region Attribute 

 2007 2017 

G’U,F 

  

G’U,B 

 
 



Power Sector Asset Networks: Determinants of the Diffusion of Renewables 

Lucas Kruitwagen 

ETH PhD-Academy on Sustainability and Technology 2018 15 

G’U,G 

 
 

 

Figure 11: Fixed Effect Model Coefficients and T-Statistics 

  

Table 1: Aggregate Data from Sample Period 

\\ 

Plant (how many) - company (how many)  - countries (how many) . 

Fuel - what type (how many)  

table - aggregates, average degree - company; average degree - country 

\\ 
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Figure A1b: Cumulative Generating Capacity, CN 

 

Figure A1c: Cumulative Generating Capacity, IN 

 

Figure A1d: Cumulative Generating Capacity, LAM 
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Figure A1e: Cumulative Generating Capacity, ME 

 

Figure A1f: Cumulative Generating Capacity, OECD_AMX 
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Figure A1g: Cumulative Generating Capacity, OECD_EUR 

 

Figure A1h: Cumulative Generating Capacity, OECD_PAC 
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Figure A1i: Cumulative Generating Capacity, OTHERX 

 

Figure A1j: Cumulative Generating Capacity, TE 
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Figure A1h: Cumulative Generating Capacity, US 

 

 

 

 

 

 

 

 

 

 


